------------------------------------------------------------------------------------------------------------------------------------------------------
      name:  STATA_Chapter5
       log:  C:\Dropbox\PilesOfVariance\Chapter5\STATA\STATA_Chapter5_Output.smcl
  log type:  smcl
 opened on:  12 Jan 2015, 10:36:26


. . display as result "Chapter 5 Example: Means by Wave for outcome" Chapter 5 Example: Means by Wave for outcome

. tabulate wave, summarize(outcome)

wave: | Summary of outcome: Test Score Occasion | Outcome (1-4) | Mean Std. Dev. Freq. ------------+------------------------------------ 1 | 10.4048 1.5368152 25 2 | 11.8576 2.2113255 25 3 | 13.5844 2.4934248 25 4 | 15.5516 3.4269042 25 ------------+------------------------------------ Total | 12.8496 3.1384687 100

. . display as result "Eq 5.1: Empty Means, Random Intercept Model" Eq 5.1: Empty Means, Random Intercept Model

. mixed outcome , /// > || personid: , variance reml covariance(unstructured) /// > residuals(independent,t(wave)), Note: single-variable random-effects specification in personid equation; covariance structure set to identity Note: t() not required for this residual structure; ignored

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -251.11191 Iteration 1: log restricted-likelihood = -251.11191

Computing standard errors:

Mixed-effects REML regression Number of obs = 100 Group variable: personid Number of groups = 25

Obs per group: min = 4 avg = 4.0 max = 4



Wald chi2(0) = . Log restricted-likelihood = -251.11191 Prob > chi2 = .

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- _cons | 12.8496 .4310792 29.81 0.000 12.0047 13.6945 ------------------------------------------------------------------------------

------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ personid: Identity | var(_cons) | 2.881871 1.37169 1.133773 7.325256 -----------------------------+------------------------------------------------ var(Residual) | 7.055445 1.152149 5.122993 9.716839 ------------------------------------------------------------------------------ LR test vs. linear regression: chibar2(01) = 9.79 Prob >= chibar2 = 0.0009

. estat ic, n(25),

Akaike's information criterion and Bayesian information criterion

----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 25 . -251.1119 3 508.2238 511.8804 ----------------------------------------------------------------------------- Note: N=25 used in calculating BIC

. estat icc,

Intraclass correlation

------------------------------------------------------------------------------ Level | ICC Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ personid | .290005 .1100872 .125289 .5380638 ------------------------------------------------------------------------------

. estat recovariance, relevel(personid),

Random-effects covariance matrix for level personid

| _cons -------------+----------- _cons | 2.881871

. estat recovariance, relevel(personid) correlation,

Random-effects correlation matrix for level personid

| _cons -------------+----------- _cons | 1

. estat wcorrelation, covariance,

Covariances for personid = 1:

obs | 1 2 3 4 -------------+-------------------------------- 1 | 9.937 2 | 2.882 9.937 3 | 2.882 2.882 9.937 4 | 2.882 2.882 2.882 9.937

. estat wcorrelation,

Standard deviations and correlations for personid = 1:

Standard deviations:

obs | 1 2 3 4 -------------+-------------------------------- sd | 3.152 3.152 3.152 3.152

Correlations:

obs | 1 2 3 4 -------------+-------------------------------- 1 | 1.000 2 | 0.290 1.000 3 | 0.290 0.290 1.000 4 | 0.290 0.290 0.290 1.000

. . display as result "Eq 5.3: Fixed Linear Time, Random Intercept Model" Eq 5.3: Fixed Linear Time, Random Intercept Model

. mixed outcome c.time, /// > || personid: , variance reml covariance(unstructured) /// > residuals(independent,t(wave)), Note: single-variable random-effects specification in personid equation; covariance structure set to identity Note: t() not required for this residual structure; ignored

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -207.54771 Iteration 1: log restricted-likelihood = -207.54771

Computing standard errors:

Mixed-effects REML regression Number of obs = 100 Group variable: personid Number of groups = 25

Obs per group: min = 4 avg = 4.0 max = 4



Wald chi2(1) = 169.57 Log restricted-likelihood = -207.54771 Prob > chi2 = 0.0000

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | 1.71672 .1318342 13.02 0.000 1.45833 1.97511 _cons | 10.27452 .4742731 21.66 0.000 9.344962 11.20408 ------------------------------------------------------------------------------

------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ personid: Identity | var(_cons) | 4.102601 1.344078 2.158699 7.796982 -----------------------------+------------------------------------------------ var(Residual) | 2.172533 .3571621 1.57409 2.998493 ------------------------------------------------------------------------------ LR test vs. linear regression: chibar2(01) = 51.12 Prob >= chibar2 = 0.0000

. estat ic, n(25),

Akaike's information criterion and Bayesian information criterion

----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 25 . -207.5477 4 423.0954 427.9709 ----------------------------------------------------------------------------- Note: N=25 used in calculating BIC

. estat recovariance, relevel(personid),

Random-effects covariance matrix for level personid

| _cons -------------+----------- _cons | 4.102601

. estat recovariance, relevel(personid) correlation,

Random-effects correlation matrix for level personid

| _cons -------------+----------- _cons | 1

. estat wcorrelation, covariance,

Covariances for personid = 1:

obs | 1 2 3 4 -------------+-------------------------------- 1 | 6.275 2 | 4.103 6.275 3 | 4.103 4.103 6.275 4 | 4.103 4.103 4.103 6.275

. estat wcorrelation,

Standard deviations and correlations for personid = 1:

Standard deviations:

obs | 1 2 3 4 -------------+-------------------------------- sd | 2.505 2.505 2.505 2.505

Correlations:

obs | 1 2 3 4 -------------+-------------------------------- 1 | 1.000 2 | 0.654 1.000 3 | 0.654 0.654 1.000 4 | 0.654 0.654 0.654 1.000

. * Intercept at Time=0 . lincom _cons*1 + c.time*0

( 1) [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 10.27452 .4742731 21.66 0.000 9.344962 11.20408 ------------------------------------------------------------------------------

. * Intercept at Time=1 . lincom _cons*1 + c.time*1

( 1) [outcome]time + [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 11.99124 .4360899 27.50 0.000 11.13652 12.84596 ------------------------------------------------------------------------------

. * Intercept at Time=2 . lincom _cons*1 + c.time*2

( 1) 2*[outcome]time + [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 13.70796 .4360899 31.43 0.000 12.85324 14.56268 ------------------------------------------------------------------------------

. * Intercept at Time=3 . lincom _cons*1 + c.time*3

( 1) 3*[outcome]time + [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 15.42468 .4742731 32.52 0.000 14.49512 16.35424 ------------------------------------------------------------------------------

. estimates store FitFixLin,

. . display as result "Eq 5.5: Random Linear Time Model" Eq 5.5: Random Linear Time Model

. mixed outcome c.time, /// > || personid: time, variance reml covariance(unstructured) /// > residuals(independent,t(wave)), Note: t() not required for this residual structure; ignored

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -183.37075 Iteration 1: log restricted-likelihood = -183.37075

Computing standard errors:

Mixed-effects REML regression Number of obs = 100 Group variable: personid Number of groups = 25

Obs per group: min = 4 avg = 4.0 max = 4



Wald chi2(1) = 70.26 Log restricted-likelihood = -183.37075 Prob > chi2 = 0.0000

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | 1.71672 .2048056 8.38 0.000 1.315308 2.118132 _cons | 10.27452 .3317511 30.97 0.000 9.6243 10.92474 ------------------------------------------------------------------------------

------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ personid: Unstructured | var(time) | .908907 .3040016 .4718659 1.750735 var(_cons) | 2.262429 .8002807 1.131052 4.525508 cov(time,_cons) | .0545357 .3506837 -.6327918 .7418632 -----------------------------+------------------------------------------------ var(Residual) | .6986308 .1397261 .4720712 1.033923 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(3) = 99.47 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estat ic, n(25),

Akaike's information criterion and Bayesian information criterion

----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 25 . -183.3708 6 378.7415 386.0548 ----------------------------------------------------------------------------- Note: N=25 used in calculating BIC

. estat recovariance, relevel(personid),

Random-effects covariance matrix for level personid

| time _cons -------------+---------------------- time | .908907 _cons | .0545357 2.262429

. estat recovariance, relevel(personid) correlation,

Random-effects correlation matrix for level personid

| time _cons -------------+---------------------- time | 1 _cons | .0380306 1

. estat wcorrelation, covariance,

Covariances for personid = 1:

obs | 1 2 3 4 -------------+-------------------------------- 1 | 2.961 2 | 2.317 3.979 3 | 2.372 4.244 6.815 4 | 2.426 5.207 7.989 11.468

. estat wcorrelation,

Standard deviations and correlations for personid = 1:

Standard deviations:

obs | 1 2 3 4 -------------+-------------------------------- sd | 1.721 1.995 2.611 3.387

Correlations:

obs | 1 2 3 4 -------------+-------------------------------- 1 | 1.000 2 | 0.675 1.000 3 | 0.528 0.815 1.000 4 | 0.416 0.771 0.904 1.000

. * Intercept at Time=0 . lincom _cons*1 + c.time*0

( 1) [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 10.27452 .3317511 30.97 0.000 9.6243 10.92474 ------------------------------------------------------------------------------

. * Intercept at Time=1 . lincom _cons*1 + c.time*1

( 1) [outcome]time + [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 11.99124 .3736306 32.09 0.000 11.25894 12.72354 ------------------------------------------------------------------------------

. * Intercept at Time=2 . lincom _cons*1 + c.time*2

( 1) 2*[outcome]time + [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 13.70796 .5030224 27.25 0.000 12.72205 14.69387 ------------------------------------------------------------------------------

. * Intercept at Time=3 . lincom _cons*1 + c.time*3

( 1) 3*[outcome]time + [outcome]_cons = 0

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- (1) | 15.42468 .6710841 22.98 0.000 14.10938 16.73998 ------------------------------------------------------------------------------

. estimates store FitRandLin,

. lrtest FitRandLin FitFixLin,

Likelihood-ratio test LR chi2(2) = 48.35 (Assumption: FitFixLin nested in FitRandLin) Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative. Note: LR tests based on REML are valid only when the fixed-effects specification is identical for both models.

. . display as result "Ch 5: Saturated Means, Unstructured Variance Model" Ch 5: Saturated Means, Unstructured Variance Model

. display as result "ANSWER KEY for both sides of the model" ANSWER KEY for both sides of the model

. mixed outcome i.wave, /// > || personid: , noconstant variance reml covariance(unstructured) /// > residuals(unstructured,t(wave)),

Obtaining starting values by EM:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -231.02623 (not concave) Iteration 1: log restricted-likelihood = -201.02114 (not concave) Iteration 2: log restricted-likelihood = -186.34703 Iteration 3: log restricted-likelihood = -180.84004 Iteration 4: log restricted-likelihood = -177.35889 Iteration 5: log restricted-likelihood = -176.88193 Iteration 6: log restricted-likelihood = -176.87671 Iteration 7: log restricted-likelihood = -176.87671

Computing standard errors:

Mixed-effects REML regression Number of obs = 100 Group variable: personid Number of groups = 25

Obs per group: min = 4 avg = 4.0 max = 4



Wald chi2(3) = 71.58 Log restricted-likelihood = -176.87671 Prob > chi2 = 0.0000

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- wave | 2 | 1.4528 .2591085 5.61 0.000 .9449567 1.960643 3 | 3.1796 .4320114 7.36 0.000 2.332873 4.026327 4 | 5.1468 .6087591 8.45 0.000 3.953654 6.339946 | _cons | 10.4048 .307363 33.85 0.000 9.80238 11.00722 ------------------------------------------------------------------------------

------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ personid: (empty) | -----------------------------+------------------------------------------------ Residual: Unstructured | var(e1) | 2.3618 .6817836 1.341299 4.158727 var(e2) | 4.889959 1.411524 2.77715 8.610157 var(e3) | 6.217168 1.794663 3.530878 10.94719 var(e4) | 11.74367 3.38998 6.669487 20.67833 cov(e1,e2) | 2.786664 .8970521 1.028475 4.544854 cov(e1,e3) | 1.95656 .8781568 .2354045 3.677716 cov(e1,e4) | 2.42039 1.182983 .1017866 4.738994 cov(e2,e3) | 4.04396 1.395621 1.308593 6.779328 cov(e2,e4) | 5.552549 1.917467 1.794383 9.310715 cov(e3,e4) | 7.799419 2.361417 3.171126 12.42771 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(9) = 108.30 Prob > chi2 = 0.0000

Note: The reported degrees of freedom assumes the null hypothesis is not on the boundary of the parameter space. If this is not true, then the reported test is conservative.

. estat ic, n(25),

Akaike's information criterion and Bayesian information criterion

----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 25 . -176.8767 14 381.7534 398.8177 ----------------------------------------------------------------------------- Note: N=25 used in calculating BIC

. estat wcorrelation, covariance,

Covariances for personid = 1:

wave | 1 2 3 4 -------------+-------------------------------- 1 | 2.362 2 | 2.787 4.890 3 | 1.957 4.044 6.217 4 | 2.420 5.553 7.799 11.744

. estat wcorrelation,

Standard deviations and correlations for personid = 1:

Standard deviations:

wave | 1 2 3 4 -------------+-------------------------------- sd | 1.537 2.211 2.493 3.427

Correlations:

wave | 1 2 3 4 -------------+-------------------------------- 1 | 1.000 2 | 0.820 1.000 3 | 0.511 0.733 1.000 4 | 0.460 0.733 0.913 1.000

. contrast i.wave,

Contrasts of marginal linear predictions

Margins : asbalanced

------------------------------------------------ | df chi2 P>chi2 -------------+---------------------------------- outcome | wave | 3 71.58 0.0000 ------------------------------------------------

. margins i.wave,

Adjusted predictions Number of obs = 100

Expression : Linear prediction, fixed portion, predict()

------------------------------------------------------------------------------ | Delta-method | Margin Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- wave | 1 | 10.4048 .307363 33.85 0.000 9.80238 11.00722 2 | 11.8576 .442265 26.81 0.000 10.99078 12.72442 3 | 13.5844 .498685 27.24 0.000 12.607 14.5618 4 | 15.5516 .6853809 22.69 0.000 14.20828 16.89492 ------------------------------------------------------------------------------

. margins i.wave, pwcompare(pveffects)

Pairwise comparisons of adjusted predictions

Expression : Linear prediction, fixed portion, predict()

----------------------------------------------------- | Delta-method Unadjusted | Contrast Std. Err. z P>|z| -------------+--------------------------------------- wave | 2 vs 1 | 1.4528 .2591085 5.61 0.000 3 vs 1 | 3.1796 .4320114 7.36 0.000 4 vs 1 | 5.1468 .6087591 8.45 0.000 3 vs 2 | 1.7268 .3475173 4.97 0.000 4 vs 2 | 3.694 .4702567 7.86 0.000 4 vs 3 | 1.9672 .3073763 6.40 0.000 -----------------------------------------------------

. . display as result "Ch 5: Random Linear Time Model with AR1 R Matrix" Ch 5: Random Linear Time Model with AR1 R Matrix

. mixed outcome c.time, /// > || personid: time, variance reml covariance(unstructured) /// > residuals(ar1,t(wave)),

Obtaining starting values by EM:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -183.37075 Iteration 1: log restricted-likelihood = -183.3697 Iteration 2: log restricted-likelihood = -183.3697

Computing standard errors:

Mixed-effects REML regression Number of obs = 100 Group variable: personid Number of groups = 25

Obs per group: min = 4 avg = 4.0 max = 4



Wald chi2(1) = 70.36 Log restricted-likelihood = -183.3697 Prob > chi2 = 0.0000

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | 1.716677 .2046619 8.39 0.000 1.315547 2.117807 _cons | 10.27625 .3308225 31.06 0.000 9.627851 10.92465 ------------------------------------------------------------------------------

------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ personid: Unstructured | var(time) | .9015393 .3458668 .4250396 1.912229 var(_cons) | 2.221615 1.218067 .7585289 6.506772 cov(time,_cons) | .069484 .4841568 -.8794458 1.018414 -----------------------------+------------------------------------------------ Residual: AR(1) | rho | .0255942 .5687964 -.7968604 .8148013 var(e) | .7193141 .4968642 .1857605 2.785375 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(4) = 99.48 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estat ic, n(25),

Akaike's information criterion and Bayesian information criterion

----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 25 . -183.3697 7 380.7394 389.2715 ----------------------------------------------------------------------------- Note: N=25 used in calculating BIC

. estat recovariance, relevel(personid),

Random-effects covariance matrix for level personid

| time _cons -------------+---------------------- time | .9015393 _cons | .069484 2.221615

. estat recovariance, relevel(personid) correlation,

Random-effects correlation matrix for level personid

| time _cons -------------+---------------------- time | 1 _cons | .0490974 1

. estat wcorrelation, covariance,

Covariances for personid = 1:

wave | 1 2 3 4 -------------+-------------------------------- 1 | 2.941 2.310 2.361 2.430 2 | 2.310 3.981 4.252 5.205 3 | 2.361 4.252 6.825 7.997 4 | 2.430 5.205 7.997 11.472

. estat wcorrelation,

Standard deviations and correlations for personid = 1:

Standard deviations:

wave | 1 2 3 4 -------------+-------------------------------- sd | 1.715 1.995 2.612 3.387

Correlations:

wave | 1 2 3 4 -------------+-------------------------------- 1 | 1.000 2 | 0.675 1.000 3 | 0.527 0.816 1.000 4 | 0.418 0.770 0.904 1.000

. estimates store FitRandLinAR1,

. lrtest FitRandLinAR1 FitRandLin,

Likelihood-ratio test LR chi2(1) = 0.00 (Assumption: FitRandLin nested in FitRandLinAR1) Prob > chi2 = 0.9634

Note: LR tests based on REML are valid only when the fixed-effects specification is identical for both models.

. . display as result "Ch 5: Random Linear Time Model with TOEP2 R Matrix" Ch 5: Random Linear Time Model with TOEP2 R Matrix

. mixed outcome c.time, /// > || personid: time, variance reml covariance(unstructured) /// > residuals(toeplitz1,t(wave)),

Obtaining starting values by EM:

Performing gradient-based optimization:

Iteration 0: log restricted-likelihood = -183.37075 Iteration 1: log restricted-likelihood = -183.37001 Iteration 2: log restricted-likelihood = -183.37001

Computing standard errors:

Mixed-effects REML regression Number of obs = 100 Group variable: personid Number of groups = 25

Obs per group: min = 4 avg = 4.0 max = 4



Wald chi2(1) = 70.33 Log restricted-likelihood = -183.37001 Prob > chi2 = 0.0000

------------------------------------------------------------------------------ outcome | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- time | 1.71669 .2047041 8.39 0.000 1.315477 2.117903 _cons | 10.2757 .3311023 31.03 0.000 9.626749 10.92465 ------------------------------------------------------------------------------

------------------------------------------------------------------------------ Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval] -----------------------------+------------------------------------------------ personid: Unstructured | var(time) | .9038457 .3309504 .4409811 1.852544 var(_cons) | 2.234488 1.078639 .8675279 5.755362 cov(time,_cons) | .0648451 .4406703 -.7988528 .9285431 -----------------------------+------------------------------------------------ Residual: Toeplitz(1) | cov1 | .0124363 .3232059 -.6210356 .6459082 var(e) | .7125808 .3908035 .2432239 2.08767 ------------------------------------------------------------------------------ LR test vs. linear regression: chi2(4) = 99.48 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

. estat ic, n(25),

Akaike's information criterion and Bayesian information criterion

----------------------------------------------------------------------------- Model | Obs ll(null) ll(model) df AIC BIC -------------+--------------------------------------------------------------- . | 25 . -183.37 7 380.74 389.2721 ----------------------------------------------------------------------------- Note: N=25 used in calculating BIC

. estat recovariance, relevel(personid),

Random-effects covariance matrix for level personid

| time _cons -------------+---------------------- time | .9038457 _cons | .0648451 2.234488

. estat recovariance, relevel(personid) correlation,

Random-effects correlation matrix for level personid

| time _cons -------------+---------------------- time | 1 _cons | .045629 1

. estat wcorrelation, covariance,

Covariances for personid = 1:

wave | 1 2 3 4 -------------+-------------------------------- 1 | 2.947 2.312 2.364 2.429 2 | 2.312 3.981 4.249 5.205 3 | 2.364 4.249 6.822 7.994 4 | 2.429 5.205 7.994 11.471

. estat wcorrelation,

Standard deviations and correlations for personid = 1:

Standard deviations:

wave | 1 2 3 4 -------------+-------------------------------- sd | 1.717 1.995 2.612 3.387

Correlations:

wave | 1 2 3 4 -------------+-------------------------------- 1 | 1.000 2 | 0.675 1.000 3 | 0.527 0.815 1.000 4 | 0.418 0.770 0.904 1.000

. estimates store FitRandLinTOEP2,

. lrtest FitRandLinTOEP2 FitRandLin,

Likelihood-ratio test LR chi2(1) = 0.00 (Assumption: FitRandLin nested in FitRandLinTO~2) Prob > chi2 = 0.9692

Note: LR tests based on REML are valid only when the fixed-effects specification is identical for both models.

. . ****** END CHAPTER 5 MODELS ****** . . * Close log . log close STATA_Chapter5 name: STATA_Chapter5 log: C:\Dropbox\PilesOfVariance\Chapter5\STATA\STATA_Chapter5_Output.smcl log type: smcl closed on: 12 Jan 2015, 10:36:32 ------------------------------------------------------------------------------------------------------------------------------------------------------